Influence of electrical conductivity on the phytoremediation of contaminated soils to Cd 2+ and Zn 2+

Document Type : Original Article


1 Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Geology, School of Earth Sciences, University of Isfahan, Isfahan, Iran

3 Department of Water Engineering, Agricultural Faculty, Islamic Azad University, Khorasgan Branch, Isfaha, Iran


Aims: This research was conducted to study the effects of the electrical conductivity (EC) of irrigation water and compost on the Cadmium (Cd) and Zinc (Zn) uptake by sunflower, Helianthus annuus. The transfer of Cd and Zn from soils close to the Zn mine, to the sunflower tissues, and the interactions between the two concerned metals, were also investigated. Materials and Methods: For this purpose, 10% weight/weight from municipal composts was applied to raw soils that were randomly collected from the mine region. Series analyses were also implemented by irrigation water, with EC values in the range of 0, 2, 4, and 6 dS/m. Results: The maximum uptake rate of Cd, with EC levels of 6 dS/m, in plant samples was 4.82 μg/g for the roots, 6.14 μg/g for the stems, and 5.4 μg/g for the leaves; and the maximum uptake of Zn, in plants irrigated with tap water, was 241 μg/g by the roots, 624 μg/g by the stems, and 229 μg/g by the leaves, respectively. Conclusions: Results showed that high EC levels of irrigation water increased Cd accumulation and decreased Zn accumulation in the shoots. The presence of high EC levels in irrigation water negatively affected biomass production by plants. Chlorine ion (Cl-) had a positive influence on Cd accumulation in the harvestable parts of the plant.


Volume 1, March
March 2012
Pages 57-62
  • Receive Date: 06 February 2023
  • Accept Date: 06 February 2023