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in the road traffic accidents annually is estimated almost 
1.2 million, while the number of people injured could be as 
large as 50 million.[1] Due to these problems there has been 
extensive investigation on the prediction models and traffic 
crash analysis.[2‑7] The accident data are usually collected by 
severity (e.g., fatal, injury and property damage only).

Severity levels are correlated because the unobservable or 
omitted variables are expected to be common at all severity 
levels for a particular segment of roadway or for one intersection. 
Hence, crash data by severity are basically multivariate in 
nature.[8‑11]

INTRODUCTION

Deaths and injuries related to the road crash are main worry 
of many governments. Globally, the number of people killed 
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ABSTRACT

Aims: Traditionally, roadway safety analyses have used univariate distributions 
to model crash data for each level of severity separately. This paper uses the 
multivariate Poisson lognormal (MVPLN) models to estimate the expected crash 
frequency by two levels of severity and then compares those estimates with 
the univariate Poisson‑lognormal  (UVPLN) and the univariate Poisson  (UVP) 
models. Materials and Methods: The parameters estimation is done by 
Bayesian method for crash data at two levels of severity at the intersection 
of Isfahan city for 6  months. Results: The results showed that there was 
over‑dispersion issue in data. The UVP model is not able to overcome this 
problem while the MVPLN model can account for over‑dispersion. Also, the 
estimates of the extra Poisson variation parameters in the MVPLN model were 
smaller than the UVPLN model that causes improvement in the precision of 
the MNPLN model. Hence, the MVPLN model is better fitted to the data set. 
Also, results showed effect of the total Average annual daily traffic (AADT)  on 
the property damage only crash was significant in the all of models but effect 
of the total left turn AADT on the injuries and fatalities crash was significant 
just in the UVP model. Hence, holding all other factors fixed more property 
damage only crashes were expected on more the total AADT. For example, 
under MVPLN model an increase of 1000 vehicles in  (average) the total 
AADT was predicted to result in 31% more property damage only crash.  
Conclusion: Hence, reduction of total AADT was predicted to be highly 
cost‑effective, in terms of the crash cost reductions over the long run.
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carlo simulation, multivariate lognormal distribution

Department of Biostatistics and Epidemiology, 
School of Public Health, Isfahan University of 
Medical Sciences, Isfahan, Iran 1Department 
of Statistics, University of Isfahan, Isfahan, 
Iran 2Department of Transportation, School of 
Transportation, Isfahan University, Isfahan, Iran

Multivariate poisson-lognormal model for modeling related 
factors in crash frequency by severity

Mehdi Tazhibi, Iraj Kazemi1, Somaye Momenyan, Hossein Haghshenas2

orginal article

This article may be cited as:
Tazhibi M, Kazemi I, Momenyan S, Haghshenas H. Multivariate poisson-lognormal model for modeling related factors in crash frequency by severity. 
Int J Env Health Eng 2013;2:30.

[Downloaded free from http://www.ijehe.org on Friday, February 3, 2023, IP: 5.238.148.9]



Tazhibi, et al.: Multivariate poisson-lognormal model

International Journal of Environmental Health Engineering  |   Vol. 2  •  Issue 2  |  March-April 20132

Traditionally, analyses have used univariate distributions to 
model crash data at different levels of severity separately such 
as Poisson and negative binomial model.[12‑16] The application 
of the univariate model ignores the correlation that exists 
across crash rates at different levels of severity. This issue 
leads to the inaccurate estimates for effects of factors.[8]

Crash data usually have excess zeroes rather than those 
expected with a Poisson model.[17,18] In other words, if the 
corresponding variance is greater than its expectation in a 
Poisson model then the over‑dispersion problem occurs. To 
takes into account this extra Poisson variation a random effect 
term with the gamma or the lognormal distribution enters 
in the model. Karlis, Ma and Tsionas used the multivariate 
Poisson (MVP) model to evaluate the effects of different 
covariates on the collision counts at different levels of severity. 
Karlis, Ma and Tsionas[19‑21] However, the assumption of non 
negative covariance component and the over‑dispersion 
problem still exist in the MVP model. The multivariate negative 
binomial (MVNB) model may solve the over‑dispersion 
problem[22] for the non negative correlations. While the 
multivariate Poisson‑lognormal (MVPLN) model accounts 
for the over‑dispersion and also for several correlation 
structures.[8‑11,23]

Then, MVPLN model is more ideal than the MVP and 
MVNB models, since (i) it accounts for over‑dispersion (extra 
Poisson variation) and (ii) it takes into consideration general 
correlation structures.[9] The execution of MVPLN models 
is not straightforward. The parameter estimation is done 
within the Bayesian model, using a Markov chain Monte 
Carlo (MCMC) simulation method.[10] In this paper, we 
use the MVPLN model for the analysis of crash data by two 
levels of severity (Property damage only crash and Injuries 
plus fatalities crash). The parameters estimation is done 
in a Bayesian perspective by the Gibbs Sampler and the 
Metropolis‑Hastings (M‑H) algorithms that can be carried 
out using freely available Open BUGS software version 3.2.1. 
The data collected at the intersection in Isfahan for 6 months.

This paper is organized as follows. First, there is a statistical 
methodology is reviewed and then data set is described. 
The paper concludes with a results, discussion and 
recommendations for future research.

Methodology

Let y ik ( ,..., ; ,..., )i n k K= 1 1=  denotes the number of 
collision at the ith intersection and kth category. Assume 
that observations are uncorrelated across intersections but 
correlated over categories.

Let further Y be an n × K matrix and their elements Yik 
follow distributed as Poisson distribution with the mean 
rate parameter λik.
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Assume that the Poisson rates are modeled by a function of 
covariates following a lognormal distribution, that is

λ εik i k ik= ′ +exp( )x β

where ′ =x i i iJx( ,..., )x 1  indicates the J‑dimensional row vectors 
of covariate. Let we define ′ =X x ,..., x1( ),n  the βk  be the 
J‑dimensional vectors ′ =βk k Jk( ,..., ),β β1  and Β β β= ( )1 K, ...,  
be the matrix of regression coefficients.

We model the correlation between yi1,…, yiK by incorporating 
the unobserved heterogeneity components εi1,…,εiK in the 
model and assume that the vector εi is distributed as K‑variate 
normal with mean zero and variance‑covariance matrix Σ, so 
that Σ is matrix with general structure to accommodate the 
correlation among the εik.

This model specification implies that the vector λi follows a 
K‑variate lognormal distribution and the response vector Yi 
follows a K‑variable Poisson‑lognormal distribution.

The probability density function of Yi is given by
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where ϕk is the K‑variate normal distribution. The marginal 
distribution of the crash counts yi cannot be obtained by 
direct computation. Obtaining the marginal distribution 
requires the evaluation of a K‑variate integral of the Poisson 
distribution with respect to the distribution of εi.

The expectation and the variance of the marginal joint 
distribution of yi and the covariance between the counts 
can be derived directly. Chib and Winkelmann[24] show that:
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Hence this model allows for the over‑dispersion because the 
variance yik excess the expectation as long as σkk > 0 for 
k = 1,…, K and the correlation structure is unrestricted 
because sign of σkj may be positive or negative. In the UVP 
model for testing over‑dispersion we may use the Pearson’s 
Chi‑Square statistic divided by the degrees of freedom, i.e., 
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µi  The value of c2 greater than 1 

indicates the over‑dispersion problem.

The Markov Chain Monte Carlo (MCMC) method under 
the Bayesian framework can be used to compute the integrals 
and subsequently to utilize the parameter estimation.
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At level one, we suppose that the parameters (B,∑) 
independently have the prior distributions:

B N wishart p kjk~ ~( , ); ( , )0 1000 1∑−

where R is scale matrix and k usually assumed to be equal to 
the rank of matrix R.

In the second level according to Bayes’ theorem (posterior ~ 
prior × likelihood) the posterior distribution of parameters 
is obtained. Now the posterior distributions can be obtained 
using MCMC sampling.

The ∑−1 can be sampled using a Gibbs sampler. In contrast, 
the posterior distributions of the B and the εi are not in 
standard forms and thus the Metropolis–Hastings algorithm 
is used. The MCMC techniques are available in Open 
BUGS version 3.2.1. MCMC approach generates values 
of the parameters from approximate distributions and 
which are distributions that converge to the target posterior 
distributions. After converging, we can do those Bayesian 
inferences of the parameters based on the sample mean and 
sample standard deviation and also based on the sample 
2.5 th percentile and the 97.5 th percentile

The interval between the 2.5th  percentile and the 
97.5th percentile are considered as the 95% credible intervals.

The Deviance Information Criteria (DIC) is a standard 
criterion in the Bayesian models comparison. As 
a goodness‑of‑fit measure, DIC is a Bayesian generalization of 
Akaike’s Information Criteria (AIC) that penalizes complex 
models with larger parameter.

Data description
Here, we fit the MVPLN model to the crash data that are 
classified into K = 2 groups: The property damage only, k = 1, 
and the injuries plus fatalities, k = 2. This data set collected 
from 65 intersections in Isfahan city. Although, the original 
data contained the crash data from 280 intersections, we 
only used those where the traffic volume data were available. 
Thus, the sampling method is simple random sampling and 
size of our sample is 65 intersections. The traffic volume 
and crash data were provided for a 6‑month period from 
calendar years 2011.

The term “crash”, as defined by traffic police of Iran, 
refers to reportable on‑street crash that includes at least 
one motor vehicle, and results in injury, at least $1,000 in 
property damage, or both. The data set does not include 
non‑vehicular crash (e.g., cyclist hitting a pedestrian) and 
includes crash that is forwarded to the police service within 
a specified period. Total AADT is defined as entering traffic 
flow for total legs of intersection and total left turn AADT 
is defined as entering traffic flow for total curb left turn of 
intersection.

In all of models, crash counts at two levels of severity are 
considered as dependent variables and total AADT and total 
left turn AADT variables as independent variables.

There were 182 accidents of property damage only and 66 
accidents of injuries plus fatalities at those 65 intersections 
for 6 month. Table 1 contains summary statistics of variables 
of interest.

RESULTS

We emphasize that while the MVPLN can handle more than 
two collision categories, here we use only two severity levels 
leading to a bivariate Poisson‑lognormal.

Posterior distributions of parameters were estimated using 
the OpenBUGS software version 3.2.1. For the underlying 
models, 10,000 iterations were discarded as burn‑in sample 
to eliminate the influence of starting values and then 100,000 
iterations followed to obtain Bayes estimates (posterior 
means and standard deviations) of the regression coefficients 
β. Convergence was assessed by visual inspection of the 
Markov chain for all parameters. Trace plots of the model 
parameters and Mont Carlo errors was checked. As a rule 
of thumb, ratios of the Monte Carlo errors relative to the 
respective standard deviations of the estimates should be 
less than 0.05.

Results of Tables 2‑4 show that there are small differences 
between estimation of the parameters under three models: 
MVPLN, UVPLN and UNP. Also, they show that some 
of the parameter estimates are significant in the 95% 
credible interval. For example the effect of total AADT 
on the property damage only crash is significant in the all 
of models. Also, the effect of total left turn AADT on the 
injuries plus fatalities crash is significant just in the UNP 
model. Hence, holding all other factors fixed more property 
damage only crashes are expected on more total AADT. For 
example, under MVPLN model an increase of 1000 vehicles 
in (average) total AADT (rising from 4053 to 5053 vehicles) 
is predicted to result in 31% more property damage only 
crash, and under the UNP model an increase of 100 vehicles 
in (average) the total left turn AADT (rising from 1205 to 
2205 vehicles) is predicted to increase injuries plus fatalities 
crash count by 10%.

Table 1: Statistical summary of data set (65 intersections)
Minimum Maximum Mean S.d.

Number of property 
damage only crash

0 17 2.8000 3.981

Number of injuries 
and fatalities crash

0 8 1.0154 1.515

Total AADT 1184.00 6689.00 4053.03 1368.265
Total left turn AADT 179.00 2558.00 1205.04 532.523
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Table 3: Results of fitting univariate Poisson‑lognormal model
Univariate poisson‑lognormal model Estimate S.d. 95% Credible intervals

Lower limit Upper 
limit

Property damage only Intercept −1.189 1 −1.189 0.8167
Total AADT 0.00022 0.000083 0.000067 0.00038
Total left turn AADT −0.000033 0.00027 −0.00056 0.00045
σ11

1.607 0.5042 0.8555 2.805
DIC 238.6

Injuries plus fatalities Intercept −1.41 1.025 −3.745 0.4466
Total AADT 0.00011 0.000134 ‑0.000141 0.00041
Total left turn AADT 0.00058 0.00038 −0.00013 0.001336
σ11

1.103 0.536 0.3422 2.4
DIC 170.2

DIC=Deviance information criteria, AADT = Average annual daily traffic

Table 4: Results of fitting multivariate poisson‑lognormal model
Multivariate poisson‑lognormal model Estimate S.d. 95% Credible intervals

Lower limit Upper 
limit

Property damage only Intercept −1.164 0.793 −2.512 0.4773
Total AADT 0.00031 0.0001 0.00013 0.00051
Total left turn AADT −0.00014 0.00032 −0.00078 0.00043
σ11

1.573 0.4685 0.8627 2.688
Injuries plus fatalities Intercept −1.323 0.8353 −2.948 0.2966

Total AADT 0.000068 0.00022 −0.00031 0.0004
Total left turn AADT 0.00073 0.00051 −0.00027 0.001702
σ11

1.091 0.4578 0.4499 2.203
Covariance (σ12) 0.938 0.352 0.3751 1.744
Correlation (ρ) 0.712
DIC 402.7

DIC=Deviance information criteria, AADT = Average annual daily traffic

Table 2: Results of fitting univariate poisson model
Univariate poisson model Estimate S.d. 95% Credible intervals

Lower limit Upper limit
Property damage only Intercept −0.5321 0.4019 −1.389 0.2201

Total AADT 0.000134 0.000052 0.000016 0.00024
Total left turn AADT 0.000066 0.000169 ‑0.00025 0/00041
DIC 408.1
Pearson Chi‑Square/DF 5.60

Injuries plus fatalities Intercept −0.329 0.6033 −1.591 0.7321
Total AADT 0.00012 0.00013 −0.00038 0.000216
Total left turn AADT 0.00098 0.000322 0.00042 0.001738
DIC 199.4
Pearson Chi‑Square/DF 1.94

DIC=Deviance information criteria, AADT = Average annual daily traffic

Results of Table 2 show that the value of Pearson’s Chi‑Square 
divided by degrees of freedom for two levels of severity is also 
greater than 1. The UNP model is not able to overcome the 
problem while the MVPLN model can take in to account 
it. Table 4 shows that the estimates of the extra Poisson 
variation parameters in the MVPLN model are greater than 
zero and as Chib and Winkelmann (1995) show when those 
parameters are positive the variance will be greater than 
the expectation. Hence, the MVPLN model can capture 
over‑dispersion.

It is known that the over‑dispersion makes the standard errors 
to be underestimated. In which case standard errors are not 

accurate estimates of true uncertainties and the confidence 
interval estimates will not capture the true parameter values. 
We emphasize that for the unbiased estimates the small 
standard errors it is mean more precise estimates. This is 
particularly crucial in cases that involve the most severe 
crashes: Those that involve fatalities or major injuries. 
Because the final objective of any highway safety analysis is 
to reduce the frequency and severity of crashes, it follows that 
obtaining the most precise estimates of crash frequency at 
the highest severity levels is highly desirable. By comparing 
the standard deviation of parameters in Tables 2‑4, we can 
see that under UVP model the values of standard deviation of 
parameters are underestimated and that is why more variables 
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got significant under the UVP rather than the MVPLN and 
the UVPLN model.

Also, the estimates of the extra Poisson variation parameters 
in the MVPLN model were smaller than the UVPLN model. 
As Basyouny and Sayed[11] showed:

var( ) ( ) ( ( )) (exp( ) )y E y E yik ik ik kk= + −2 1σ

Since the second term in the above equation dominates the 
first, we obtain

var( ) ( ( )) (exp( ) )y E yik ik kk≅ −2 1σ

Thus, we have

var( | )
var( | )

(exp( ) )
(exp( ) )

y MVPLN
y PLN

ik

ik

kk

kk

≅
−
−

σ
σ

�

�
1
1

where ŝkk and σ kk are the estimates of the extra Poisson 
variation parameters under the MVPLN and the UVPLN, 
respectively. As precision is inversely proportional to the 
variance of expected collision frequency, it is estimated that 
the MVPLN model is more precise than the UVPLN model. 
This is because the MVPLN model takes into account the 
correlation among two levels of severity.

The correlation was estimated 0.712, which is significant. In 
real meaning, the higher property damage only crash rates 
are related to the higher injuries plus fatalities crash rates 
that even after controlling for the covariates, there is extra 
correlation between these two levels of severity that is not 
explained and is due to same deficiency in intersection design 
and/or other unobserved variables. In terms of goodness‑of‑fit, 
the Deviance Information Criteria (DIC) quantifies the 
relative goodness‑of‑fit of the models; therefore, it is useful 
for comparing models. As are presented in Tables 2‑4 the 
MVPLN model provides a better fit over the UVPLN and the 
UVP model as DIC for the MVPLN model is smaller than 
the sum of DICs for two levels of severity under the UVPLN 
and the UVP model.

DISCUSSION

Traditionally, univariate models are used to analyze crash 
data for different levels of severity separately. This research 
used a MVPLN model to jointly analyze a sample of crash 
counts classified by two levels of severity at 65 intersections 
in Isfahan city. Furthermore, for comparison the UVPLN 
and the UVP models were fitted for each of severity levels. 
Results showed that the MVPLN model preferred rather 
than the UVPLN and the UVP model. Because univariate 
models neglect the correlation of crash counts at different 
levels of severity while the MVPLN model allows for a general 
correlation structure among different levels of severity, as 

well as handing over‑dispersion. Parameters estimates of all 
models are achieved within the Bayesian framework that is 
implemented by using the OpenBUGS software.

Both, model parameter estimates and their variances 
were discussed. As expected, the results provide several 
recommendations for urban intersection safety treatments. 
For example, reduction of total AADT is predicted to be highly 
cost‑effective, in terms of the crash cost reductions over the 
long run. Findings of this paper confirm with those already 
illustrated by other authors. For example in the study that is 
implemented in Washington State on rural two‑lane Roadways 
by Ma et al., (2006) an increase of 1000 vehicles in average 
annual daily traffic level (rising from 3757 to 4757 vehicles) 
was predicted to increase total crash count by 16.4% and the 
disabling crash count by 40% at MVPLN model.[9] Park and 
Lord (2007) applied three models of the MVPLN, the UVP 
and the UVNB on the crash count data of five different severity 
levels collected from unsignalized intersections in California. 
They showed that effects of minor and major AADT of the 
intersection are significant at the five severity levels for three 
models. In their study the variables such that the Painted 
Left Turn and the Curb Med Left Turn were checked just 
two variables minor and major AADT were significant at two 
levels of severity. Thus, the reduction of traffic volume at 
the intersection is more considerable than other variables to 
reduce accident at two levels of severity. They also illustrated 
the over‑dispersion problem in their data and thus fitting the 
UVP model leads to underestimation of standard deviations. [10] 
Also, Aguero‑Valverde (2012) showed that effect of AADT 
on crash for rural two‑lane segments that located in Central 
Pennsylvania is significant when fitting Poisson gamma, 
Poisson lognormal, and zero inflated random effects models. [25] 
In another study, Aguero‑Valverde applied the MVPLN model 
for five levels of severity. He examined the ADT variable 
simultaneously with variables such that the Shoulder width, 
the Lane width and the Speed limit. Among all variables 
only ADT was significant at all levels of severity. El‑Basyouny 
and Sayed (2009) used the MVPLN and the UNPLN for the 
purpose of developing collision prediction models relating the 
safety of urban 4‑leg intersections to their traffic flows. They 
showed the effects of minor and major AADT are significant 
at two levels of severity (Property damage only and Injuries 
and fatalities crash) under two models MVPLN and UVPLN. 
they further showed the MVPLN model offers more precise 
estimates than the UVPLN model.[11]

The correlation among two levels of severity was estimated 
0.71, which this correlations may be caused by omitted 
variables (such as painted left turn, curb med left turn, Speed 
limit and surrounding land use), which can influence crash 
occurrence at all levels of severity. Essentially, higher crash 
rates of one type are associated with higher crash rates of 
other types. The MVPLN model accounts this correlation. 
That is the reason why it offers more precise estimates than 
the UVPLN model. results showed the estimates of the extra 
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Poisson variation parameters in the MVPLN model were 
smaller than the UVPLN model. Since variance of expected 
collision frequency is function of the extra Poisson variation 
parameters and the precision is inversely proportional to the 
variance of expected collision frequency then precision of the 
MVPLN model is larger than the UVPLN model.

In terms of goodness‑of‑fit, the MVPLN model provides a 
better fit over the two other models as the DIC for the MVPLN 
model is less than the sum of DICs for the UVPLN and the 
UVP models. This paper is based on a small dataset and for a 
short period but despite the limitations of these data results 
of this paper conform to those in literatures. Nevertheless, 
there are challenges for further research, for example crash 
data usually have low sample mean values, small sample 
size, and statistical models become very unstable when they 
are estimated using this kind of data.[26,27] Hence, stability 
of models should be investigated along with the sensitivity 
analysis of models for different hyper‑prior specifications. 
Furthermore, the changes in the signs of coefficients between 
different levels of severity need to be investigated. AADT 
models suffer from omitted variables bias but such models 
are well accepted in the traffic safety literature.

In this paper, two severity levels were investigated. However, 
different levels of severity could be included (e.g., fatality, 
severe injury, light injury, PDO, etc.), different crash types 
could be considered (e.g., angle, head‑on, rear‑end, sideswipe, 
etc.), or geometric design feature that are not available in 
our dataset could be incorporated in the model. By means 
of improvement in statistical tools, which allows for a more 
precise analysis and the appropriate dataset transportation 
engineers are able to better understand the relationship 
between crash counts and related factors in its occurrence.
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